Source code for torchvision.ops.roi_align
import torch
from torch import nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from torchvision.extension import _lazy_import
from ._utils import convert_boxes_to_roi_format
class _RoIAlignFunction(Function):
@staticmethod
def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio):
ctx.save_for_backward(roi)
ctx.output_size = _pair(output_size)
ctx.spatial_scale = spatial_scale
ctx.sampling_ratio = sampling_ratio
ctx.input_shape = input.size()
_C = _lazy_import()
output = _C.roi_align_forward(
input, roi, spatial_scale,
output_size[0], output_size[1], sampling_ratio)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
rois, = ctx.saved_tensors
output_size = ctx.output_size
spatial_scale = ctx.spatial_scale
sampling_ratio = ctx.sampling_ratio
bs, ch, h, w = ctx.input_shape
_C = _lazy_import()
grad_input = _C.roi_align_backward(
grad_output, rois, spatial_scale,
output_size[0], output_size[1], bs, ch, h, w, sampling_ratio)
return grad_input, None, None, None, None
[docs]def roi_align(input, boxes, output_size, spatial_scale=1.0, sampling_ratio=-1):
"""
Performs Region of Interest (RoI) Align operator described in Mask R-CNN
Arguments:
input (Tensor[N, C, H, W]): input tensor
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
then the first column should contain the batch index. If a list of Tensors
is passed, then each Tensor will correspond to the boxes for an element i
in a batch
output_size (int or Tuple[int, int]): the size of the output after the cropping
is performed, as (height, width)
spatial_scale (float): a scaling factor that maps the input coordinates to
the box coordinates. Default: 1.0
sampling_ratio (int): number of sampling points in the interpolation grid
used to compute the output value of each pooled output bin. If > 0,
then exactly sampling_ratio x sampling_ratio grid points are used. If
<= 0, then an adaptive number of grid points are used (computed as
ceil(roi_width / pooled_w), and likewise for height). Default: -1
Returns:
output (Tensor[K, C, output_size[0], output_size[1]])
"""
rois = boxes
if not isinstance(rois, torch.Tensor):
rois = convert_boxes_to_roi_format(rois)
return _RoIAlignFunction.apply(input, rois, output_size, spatial_scale, sampling_ratio)
[docs]class RoIAlign(nn.Module):
"""
See roi_align
"""
def __init__(self, output_size, spatial_scale, sampling_ratio):
super(RoIAlign, self).__init__()
self.output_size = output_size
self.spatial_scale = spatial_scale
self.sampling_ratio = sampling_ratio
def forward(self, input, rois):
return roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio)
def __repr__(self):
tmpstr = self.__class__.__name__ + '('
tmpstr += 'output_size=' + str(self.output_size)
tmpstr += ', spatial_scale=' + str(self.spatial_scale)
tmpstr += ', sampling_ratio=' + str(self.sampling_ratio)
tmpstr += ')'
return tmpstr