Source code for torch.nn.intrinsic.modules.fused
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from torch.nn import Conv2d, ReLU, Linear, BatchNorm2d
[docs]class ConvReLU2d(torch.nn.Sequential):
def __init__(self, conv, relu):
assert type(conv) == Conv2d and type(relu) == ReLU, \
'Incorrect types for input modules{}{}'.format(type(conv), type(relu))
super(ConvReLU2d, self).__init__(conv, relu)
[docs]class LinearReLU(torch.nn.Sequential):
def __init__(self, linear, relu):
assert type(linear) == Linear and type(relu) == ReLU, \
'Incorrect types for input modules{}{}'.format(type(linear), type(relu))
super(LinearReLU, self).__init__(linear, relu)
[docs]class ConvBn2d(torch.nn.Sequential):
def __init__(self, conv, bn):
assert type(conv) == Conv2d and type(bn) == BatchNorm2d, \
'Incorrect types for input modules{}{}'.format(type(conv), type(bn))
super(ConvBn2d, self).__init__(conv, bn)
[docs]class ConvBnReLU2d(torch.nn.Sequential):
def __init__(self, conv, bn, relu):
assert type(conv) == Conv2d and type(bn) == BatchNorm2d and \
type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
.format(type(conv), type(bn), type(relu))
super(ConvBnReLU2d, self).__init__(conv, bn, relu)