torchvision.utils¶
-
torchvision.utils.
make_grid
(tensor, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0)[source]¶ Make a grid of images.
- Parameters
tensor (Tensor or list) – 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size.
nrow (python:int, optional) – Number of images displayed in each row of the grid. The final grid size is
(B / nrow, nrow)
. Default:8
.padding (python:int, optional) – amount of padding. Default:
2
.normalize (bool, optional) – If True, shift the image to the range (0, 1), by the min and max values specified by
range
. Default:False
.range (tuple, optional) – tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor.
scale_each (bool, optional) – If
True
, scale each image in the batch of images separately rather than the (min, max) over all images. Default:False
.pad_value (python:float, optional) – Value for the padded pixels. Default:
0
.
Example
See this notebook here
-
torchvision.utils.
save_image
(tensor, fp, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0, format=None)[source]¶ Save a given Tensor into an image file.
- Parameters
tensor (Tensor or list) – Image to be saved. If given a mini-batch tensor, saves the tensor as a grid of images by calling
make_grid
.- A filename (fp) –
format (Optional) – If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used.
**kwargs – Other arguments are documented in
make_grid
.