Source code for torchvision.ops.ps_roi_pool
import torch
from torch import nn, Tensor
from torch.nn.modules.utils import _pair
from torch.jit.annotations import List
from ._utils import convert_boxes_to_roi_format, check_roi_boxes_shape
[docs]def ps_roi_pool(input, boxes, output_size, spatial_scale=1.0):
# type: (Tensor, Tensor, int, float) -> Tensor
"""
Performs Position-Sensitive Region of Interest (RoI) Pool operator
described in R-FCN
Arguments:
input (Tensor[N, C, H, W]): input tensor
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
then the first column should contain the batch index. If a list of Tensors
is passed, then each Tensor will correspond to the boxes for an element i
in a batch
output_size (int or Tuple[int, int]): the size of the output after the cropping
is performed, as (height, width)
spatial_scale (float): a scaling factor that maps the input coordinates to
the box coordinates. Default: 1.0
Returns:
output (Tensor[K, C, output_size[0], output_size[1]])
"""
check_roi_boxes_shape(boxes)
rois = boxes
output_size = _pair(output_size)
if not isinstance(rois, torch.Tensor):
rois = convert_boxes_to_roi_format(rois)
output, _ = torch.ops.torchvision.ps_roi_pool(input, rois, spatial_scale,
output_size[0],
output_size[1])
return output
[docs]class PSRoIPool(nn.Module):
"""
See ps_roi_pool
"""
def __init__(self, output_size, spatial_scale):
super(PSRoIPool, self).__init__()
self.output_size = output_size
self.spatial_scale = spatial_scale
def forward(self, input, rois):
return ps_roi_pool(input, rois, self.output_size, self.spatial_scale)
def __repr__(self):
tmpstr = self.__class__.__name__ + '('
tmpstr += 'output_size=' + str(self.output_size)
tmpstr += ', spatial_scale=' + str(self.spatial_scale)
tmpstr += ')'
return tmpstr